Performance Analysis of a Noncontact Plastic Fiber Optical Fiber Displacement Sensor with Compensation of Target Reflectivity
نویسندگان
چکیده
Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. An inexpensive fiber-based noncontact distance sensor specific for monitoring short-range displacements in micromachining applications is presented. To keep the overall costs low, the sensor uses plastic optical fibers and an intensiometric approach based on the received light intensity after the reflection from the target whose displacement has to be measured. A suitable target reflectivity compensation technique is implemented to mitigate the effects due to target surface nonuniformity or ageing. The performances of the sensor are first evaluated for different fiber configurations and target reflectivity profiles and positions using a numerical method based on Monte Carlo simulations. Then, experimental validations on a configuration designed to work up to 1.5 mm have been conducted. The results have confirmed the validity of the proposed sensor architecture, which demonstrated excellent compensation capabilities, with errors below 0.04 mm in the (0-1) mm range regardless the color and misalignment of the target.
منابع مشابه
Fabrication and Characterization of the Fiber Optical Taper for a Surface Plasmon Resonance Sensor
For a fiber optical surface plasmon resonance (SPR) sensor a short part of its cladding should be removed to coat a thin layer of a metal. Usually this is problematic when an optical fiber with small core diameter is used. In this paper, a new method using µliter droplet of the HF acid for short fiber optical taper fabrication is reported. Using this method in a multi-mode optical fiber w...
متن کاملSensitivity Enhancement of Fiber Optic Diesel Adulteration Detection Sensor Using Stripped Clad SBend Section
A novel geometry for enhancing the sensitivity of intensity modulated refractometric fiber optic sensor for detection of adulteration level in diesel by kerosene is proposed. In this multimode plastic optical fiber is uncladded for specific length and bent into S shape. This geometry is simulated and analyzed using Beam Propagation Method in Beam prop RSOFT software. When sensor is immersed in ...
متن کاملWeight Measurements by Using Simple Optical-Fiber Sensors (RESEARCH NOTE)
The use of different optical-fiber sensors for weighing measurements is Abstract described. By using three different mechanical stressing mechanisms, the operation of the fiber-to-fiber transducer systems are tested and the results are presented. Parameters such as sensitivity, hysteresis, resolution, and dynamic range are measured. A comparison of the results has shown that the sensor system m...
متن کاملFiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)
The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...
متن کاملA low-cost intensity-based plastic optical fiber sensing system for permanent structural health monitoring
Fiber optic sensors are attracting an increasing interest in many applications because of their high sensitivity combined with other unique properties such as immunity to electrostatic discharges, intrinsic fire safety and minimum invasiveness. However, their wide diffusion in structural permanent monitoring is still hampered by costs, especially those related to the interrogators and installat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sensors
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013